Available at <u>www.ijcasonline.com</u>

International Journal of Modern Chemistry and Applied Science

International Journal of Modern Chemistry and Applied Science, 2016, 3(3),450-456

Effect of Aerobic Training on Selected Biochemical Variables in Overweight Male Students of Mekelle University

Fisseha Gebru^{1*} and Soumitra Mondal²

Department of Sports Science, College of Natural and Computational Sciences Mekelle University, P.O.Box 231, Mekelle, Ethiopia

Abstract: The purpose of this study was to find the effect of aerobic exercise training program on selected biochemical variables in overweight students. From Mekelle university twenty overweight males were purposively selected as subjects. The subject's age ranged from 20- to 25 years. The selected subjects were divided in to two groups. group one(experimental) was given eight week regular aerobic exercise training program(running and cycling) with intensity of 60%-70% in gymnasium center., group two was as control group. For this study low density lipoprotein cholesterol, triglycerides, total cholesterol and fasting blood glucose were selected as biochemical variables. In order to administrate the tests and protocol of training this study done through sophisticated materials such as mindray, blood glucometer, serum tube (for blood sample and to administered the protocol of training, electrical treadmill and electrical cycle bike program component was used. The collected data of the selected variables were analyzed statistically by using spss20. Analysis of variance (ANOVA) was used to determine the differences, if any among the adjusted post test means on selected dependent variables separately. The level of significance was fixed at.05 level of confidence, which was considered as appropriate. The results of the study showed that aerobic training brought positive significant difference on the selected physiological, anthropometrical and biochemical variables in experimental group compare with to control group.

Key Words: Blood glucose, Biochemical, cholesterol, overweight

Introduction

An inactive lifestyle can disrupt the energy balance, thereby causing overweight and obesity. Obesity is characterized by high fat and endomorph rates ¹. It has been noted that body weight beyond normal limits will cause various health problems and weaken the work capacity of a person². Inactive and sedentary individuals are more prone to wide range of diseases, from the so-called 'the disease of our era', i.e. obesity, and cardiovascular diseases to others such as muscle weakness, postural deformations and diabetes ³. Physical activity prevents and helps to cure the atherosclerotic risk factors such as high blood pressure, insulin resistance, glucose intolerance, high triglyceride concentration, low and high concentration of lipoprotein cholesterol concentration and obesity. Exercise in low density along with loss weight can both lower lipoprotein cholesterol (LDL) concentrations and control the decrease in HDL⁴.

Aerobic exercise prevents and helps to cure the atherosclerotic risk factors such as high blood pressure, insulin resistance, glucose intolerance, high triglyceride concentration, low and high concentration of lipoprotein cholesterol concentration and obesity. Exercise in low density along with loss weight can both lower lipoprotein cholesterol (LDL) concentrations and control the decrease in HDL ⁴. Many studies in the field show that physical activity reduces the risk of cardiovascular diseases ⁵.

Therefore, the researcher is initiated to investigate this study entitle "Effect of aerobic training on Selected Biochemical Variables in Overweight Male Students of Mekelle University".

Methodology

Sample and Sampling technique

The researcher selected twenty overweight students purposively from Mekelle University and the selected

subjects were grouped in to experimental (n=10) and control group (n=10) by using simple random technique

Selection of subjects

Since the purpose of the study was to investigate and analyze the changes that occurred in the overweight male students was selected by means of vacancy, in print media and through personal contact Overweight male Voluntary students, Age range from (19 to 25 years) were assed with BMI test criteria selection.

The objectives of the study were explained to all subjects and all of them agreed and made consent to undergo the testing and training program. This study was conducted after taking informed Consent, medical examination and ethical clearance from Ayder referral hospital was noted. The subjects of both groups were included pre-test and post- test for both groups.

The sample of 20 overweight students who were randomly assigned into an experimental group EG (n = 10) and a control group CG (n=10). Some criteria for exclusion were defined so as to prevent any issues with the internal and external validity of the study. For this study 20 overweight male individual free from or exercise induced asthma, smoking, chronic cough, recurrent respiratory tract infection, history of chest or spinal deformity and chronic Obstructive lung diseases were selected purposively from Mekelle university.

Collection of data

To collect the data the research was taken through sophisticated and modern chemistry laboratory equipments, mind ray, glucometer, Serum test tube, strip, electrical treadmill, and electrical cycle bike measurements and experienced doctor and laboratory physician. Pre and posttest on the selected biochemical variables were tested. For the biochemical variables data was gathered by professional experts.

Flow Chart Representation for Selection of Subjects and Procedures of the Study

Statistical technique

The following statistical techniques were employed for the analysis of data:

- 1. To find out the signicance of difference between the pre-test mean of the experimental and control group, the 't' test was employed.
- 2. Analysis of variance (ANOVA) was applied to find out the significant difference if any, among the experimental group and control group on selected criterion variables
- 3. The collected data during Pre-test and post-test was analyzed using SPSS version 20 software.

4. To test research hypotheses, in all cases 0.05 level of significance was set.

Area of the study

Mekelle University is located in Mekelle town Tigray, Regional State of Northern Ethiopia .it is found about 783 Analysis of Data K.M from Addis Ababa, capital city of Ethiopia Under the study area there are five campuses (Arid campus, Aynalem campus, Ayder campus, Adihaki campus and kalamino campus).

-				
Table-1 Descrip	ptive Analysis of Mean	Scores Between Ex	perimental and Control	Groups on Total Cholesterol

Group	Test	Ν	Mean	SD	SE	Minimum	Maximum
Experimental	Pre	10	197.40	20.090	6.353	176	230
Control	Pre	10	196.00	18.294	5.785	180	226
Experimental	post	10	182.8000	14.68786	4.64471	166.00	206.00
Control	post	10	204.9000	17.09743	5.40668	189.00	231.00

Table-1 shows that the pretest mean and standard deviationvalues on total cholesterol for experimental and controlgroupswere 197.40 ± 20.090 and 196.00 ± 18.294

respectively. The posttest means and standard deviation for the experimental and control groups after eight weeks were 182.8000 ± 14.68786 and 204.9000 ± 17.09743 respectively

Table-2 Analysis Of Variance of the Mean Scores Between Experimental and Control Groups on Total Cholesterol

Means	Group		SV	SS	DF	MS	F. ratio	Sig.
Pre-test	Experimental	Control						
Mean	107.40	196.00 18.294	В	9.800	1	9.800	.027	.872
50	20.090		W	6644.400	18	369.133	_	
Post-test	182.8000 14.68786	204.9000	В	2442.050	1	2442.050	9.613	.006
Mean SD		17.09743	W	4572.500	18	254.028		
Adjusted post test	182.230	205.470	В	2696.528 166.270	1 17	2696.528 9.781	275.703	.000

*Significant at 0.05 level of significance

F= ratio needed for significance at 0.05 level of significance, SV=source of variance SS= sum of square, DF= degree of freedom, MSS= mean sum of square

Table-2 shows that the F-ratio for pre test of is .027 against the table value of 1.734 (df 1 and 18) which is not significant at 0.05 level of confidence. It implies that there is no significant difference between the pre tests mean scores of experimental and control groups on total cholesterol. From the above table it infers that the F-ratio for post test of is 9.613 against the table value 1.734 (df 1 and 18) which is significant at 0.05 level of confidence. Since the obtained F-ratio is greater than the table value, it

implies that there is significant difference between the post test mean scores of experimental and control groups. The table that the F-ratio for adjusted post test of is 275.703 against the table value 1.740 (df 1 and 17) which is significant at 0.05 level of confidence. Since the value of Fratio is higher than the table value, it indicates that there is significant difference among the adjusted post-test means of experimental and control groups on total cholesterol.

International Journal of Modern Chemistry and Applied Science, 2016, 3(3),450-456

Table-3 Descrip	ptive Analysis	of Mean Scores	Between Ext	perimental and	Control Grou	ps on Low Der	sity Lipoproteins
	per ver i marjoro		Deen een Lin	our and	00111101 0104		any herefore mo

Group	Test	Ν	Mean	SD	SE	Minimum	Maximum
Experimental	pre	10	93.50	8.114	2.566	81	107
Control	pre	10	89.90	5.280	1.670	83	102
Experimental	post	10	87.6000	7.05849	2.23209	77.00	100.00
Control	post	10	91.5000	5.23344	1.65496	83.00	101.00
0 1 1 1		1 . 1	1 1		701		

Table-3 shows that the pretest mean and standard deviation values on low density lipoprotein for experimental and control groups were 93.50 ± 8.114 and 89.90 ± 5.280

respectively. The posttest means and standard deviation for the experimental and control groups after eight weeks were 87.6000 ± 7.05849 and 91.5000 ± 5.23344 respectively

Table-4 Analysis Of Variance of Mean Scores low density lipoprotein Of Between Experimental Group and Control Groups on Low Density Lipoprotein

Means	Group		SV	SS	DF	MS	F. ratio	Sig.
Pre-test	Experimental	Control						
Mean	93.50 8.114	89.90	В	64.800	1	64.800	1.383	.255
SD		5.280	W	843.400	18	46.856		
Post-test	87.6000	91.5000	В	76.050	1	76.050	1.970	.177
Mean SD	7.05849	5.23344	W	694.900	18	38.606		
Adjusted Posts-test	86.043		В	228.419	228	228.419	60.75	.000
Mean		93.057	W	63.918	17	3.760		

*Significant at 0.05 level of significance

F= ratio needed for significance at 0.05 level of significance, SV=source of variance SS= sum of square, DF= degree of freedom, MSS= mean sum of square

Table-4 shows that the F-ratio for pre test of is 1.383 against the table value 1.734 (df 1 and 18) which is insignificant at 0.05 level of confidence. It implies that there is no significant difference between the pre tests mean scores of experimental and control groups on low density lipoprotein. From the above table it infers that the F-ratio for post test of is 1.970 against the table value 1.734 (df 1 and 18) which is significant at 0.05 level of confidence. Since the obtained F-ratio is greater than the table value, it implies that there is

significant difference between the post test mean scores of experimental and control groups. The table of that the Fratio for adjusted post test is 60.752 against the table value 1.740 (df 1 and 17) which is significant at 0.05 level of confidence. Since the value of F-ratio is higher than the table value, it indicates that there is significant difference among the adjusted post-test means of experimental and control groups on low density lipoprotein.

Table-5 Descri	ptive Anal	vsis of Mean	Scores Between	Experimental and	l Control Grou	ps on Fasting Blood Suga	r
	pureriman	, bib of filean	Decires Decireen	Emportinental and	Control Olog	ips on I abiling Blood Buga	*

Group	Test	Ν	Mean	SD	SE	Minimum	Maximum
Experimental	pre	10	89.10	2.685	.849	86	94
Control	pre	10	89.00	2.211	.699	86	93
Experimental	post	10	87.7000	2.05751	.65064	84.00	91.00
Control	post	10	91.8000	1.87380	.59255	89.00	95.00

Table-5 shows that the pretest mean and standard deviation values on fasting blood pressure for experimental and control groups were 89.10 ± 2.685 and 89.00 ± 2.211 respectively.

The posttest means and standard deviation for the experimental and control groups after eight weeks were 87.7000 ± 2.05751 and 91.8000 ± 1.87380 respectively.

Table-6 Analysis Of Variance of Mean Scores Between Experimental and Control Groups on Fasting Blood Sugar

Means	Group		SV	SS	DF	MS	F. ratio	Sig.
Pre-test	Experiment al	Control						
	89.10	89.00	В	.050	1	.050	.008	.929
mean SD			W	108.900	18	6.050	_	
Post-test	87.7000		В	84.050	1	84.05	21.706	.000
mean SD	-	91.8000	W	69.700	18	3.872	-	
Adjusted Posts-test	87.677		В	85.877	1	85.88	30.812	.000
Mean		91.823	W	47.381	17	2.787	_	

F= ratio needed for significance at 0.05 level of significance, SV=source of variance SS= sum of square, DF= degree of

freedom, MSS= mean sum of square

Table-6 shows that the F-ratio for pre test is .008 against the table value 1.734 (df 1 and 18) which is insignificant at 0.05 level of confidence. It implies that there is no significant difference between the pre tests mean scores of experimental and control groups on fasting blood pressure.. From the above table it infers that the F-ratio for post test is 21.706 against the table value 1.734 (df 1 and 18) which is significant at 0.05 level of confidence. Since the obtained F-ratio is greater than the table value, it implies that there is

significant difference between the post test mean scores of experimental and control groups. The table of that the Fratio for adjusted post test of is 30.812 against the table value 1.740 (df 1 and 17) which is significant at 0.05 level of confidence. Since the value of F-ratio is higher than the table value, it indicates that there is significant difference among the adjusted post-test means of experimental and control groups on fasting blood glucose

Figure-3 Graphic Presentation of Mean Scores Between Experimental and Control Groups on Fasting Blood Glucose

Table-7 Descript	tive Anal	ysis of Mea	an Scores Bety	ween Experim	ental and Co	ntrol Groups Tr	riglycerides
Group	Test	Ν	Mean	SD	SE	Minimum	Maximum
Experimental	pre	10	189.70	14.989	4.740	170	220
Control	pre	10	188.80	12.934	4.090	170	213
Experimental	post	10	180.5000	13.23505	4.18529	162.00	207.00
Control	post	10	199.4000	14.42375	4.56119	183.00	230.00

Table-7 shows that the pretest mean and standard deviation values on triglycerides for experimental and control groups were 189.70 ± 14.989 and 188.80 ± 12.934 respectively. The Table 8 Analysis Of Vari

posttest means and standard deviation for the experimental and control groups after ten weeks were 180.5000 ± 13.23505 and 199.4000 ±14.42375 respectively. • 1 stal Cra and Control C

Means	Group		S	SS	DF	MS	F. ratio	Sig.
Pre-test	Experimental	Control	V					
		188.80	В	4.050	1	4.050	.021	.887
Mean	189.70						_	
SD	14.989	12.934	W	3527.700	18	195.983		
Post-test	180.5000			1786.050	1	1786.050	9.321	.007
			В					
Mean	13.23505	199.4000		3448.900	18	191.606		
SD			W					
		14.42375						
Adjusted	180.079^{a}			1946.646	1	1946.646	93.029	.000
Posts test			В					
Mean		199.821 ^a	W	355.726	17	20.925		

*Significant at 0.05 level of significance

F= ratio needed for significance at 0.05 level of significance, SV=source of variance SS= sum of square, DF= degree of freedom, MSS= mean sum of square

Table-8 shows that the F-ratio for pre test of is .021 against the table value1.734 (df 1 and 18) which is insignificant at 0.05 level of confidence. It implies that there is no significant difference between the pre tests mean scores of experimental and control groups on triglycerides. From the above table it infers that the F-ratio for post test of is 9.321 against the table value 1.734 (df 1 and 18) which is significant at 0.05 level of confidence. Since the obtained F-ratio is greater than the

table value, it implies that there is significant difference between the post test mean scores of experimental and control groups. The table of that the F-ratio for adjusted post test of is 93.029 against the table value 1.740 (df 1 and 17) which is significant at 0.05 level of confidence. Since the value of F-ratio is higher than the table value, it indicates that there is significant difference among the adjusted post-test means of experimental and control groups on triglycerides

Figure-4 Graphic Presentation of Mean Scores Between Experimental and Control Groups On Triglycerides

Acknowledgements

I am grateful thanks to head officer of head, department of laboratory of Ayder referral hospital with all staff members for supporting me during blood sample collection for my research work. And thanks to main campus clinic staff members of Mekelle University for helping me for medical pre screening purpose

Reference

- 1. Erkan, N., 1998. Yaşam BoyuSpor, Bağırgan Yayımevi, Ankara
- 2. Carter, J.E.L., B.H. Heath, 1990. Somatotyping-Development and Application, Cambridge University Press
- Guo, S.S., C. Zeller, W.C. Chumlea, Am. J. Clin. Nutr., 70(3): 405-411, 1999.
- Stefanick, M.L., S. Mackey, M. Sheehan, *et al.* N Engl J Med., 339: 12-20, 1998.
- Kraus, W., J. Houmard, B. Duscha, K. Knetgzer, M. Wharton, J. McCartney, C. Bales, S. Henes, G. Samsa, J. Otvos, K. Kulkarni, C. Slentz, N Engl J Med., 347: 1483-1492, 2002.